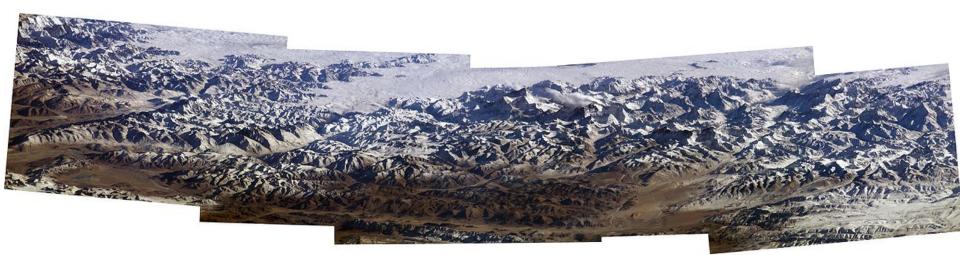




#### MULTIMODAL OPTIMIZATION


MIKE PREUSS.



#### WHAT ARE WE DEALING WITH?







Multimodal Optimization Mike Preuss.

#### SOME GENERAL NOTES



- more questions than answers in Multimodal Optimization (MMO)
- field not well defined
- basic terms not well defined
- similarities to Multi-Objective Optimization (MOO)
- huge bulk of literature
- Evolutionary Computation (EC) people focus on EC approaches
- consider this as "request for comments"
- suggestions for future work appreciated
- better: you start to do interesting MMO stuff

OUTLINE



- why multimodal optimization (MMO)?
- abstraction: niching and a model EA
- different scenarios and their measures
- taxonomy of methods
- results/competition/software
- the future



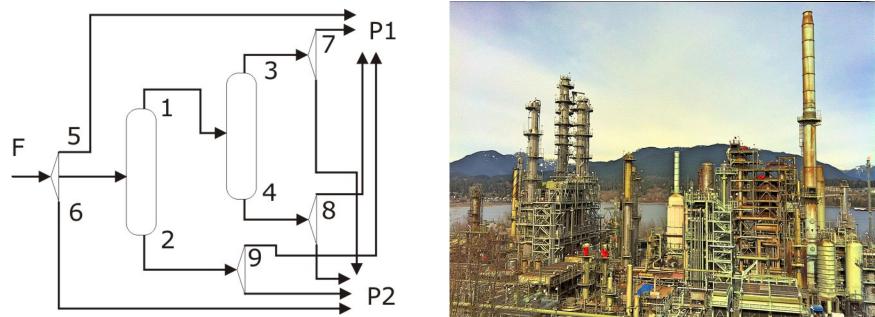
# why multimodal optimization (MMO)?

## **ATTEMPTING A DEFINITION**



In a multimodal optimization task, the main purpose is to find multiple optimal solutions (global and local), so that the user can have a better knowledge about different optimal solutions in the search space and as and when needed, the current solution may be switched to another suitable optimum solution.

Deb, Saha: <u>Multimodal Optimization Using a Bi-Objective Evolutionary Algorithm</u>, ECJ, 2012


main tasks:

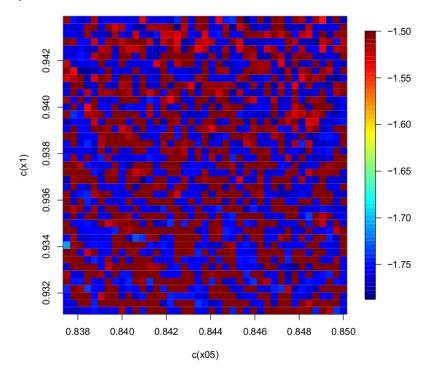
- alternative solutions
- problem knowledge

## SEPARATION PROCESS OPTIMIZATION

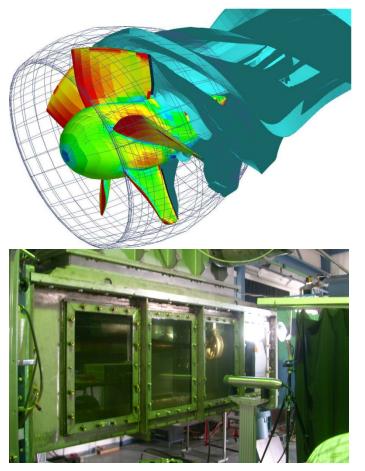


**REAL-WORLD EXAMPLES** 




many solutions invalid, looks like Rastrigin problem

Henrich, Bouvy, Kausch, Lucas, Preuss, Rudolph, Roosen. <u>Economic optimization of non-sharp separation sequences by means of evolutionary algorithms</u>. In *Computers & Chemical Engineering*, Volume 32, Issue 7, pp. 1411-1432. Elsevier, 2008.

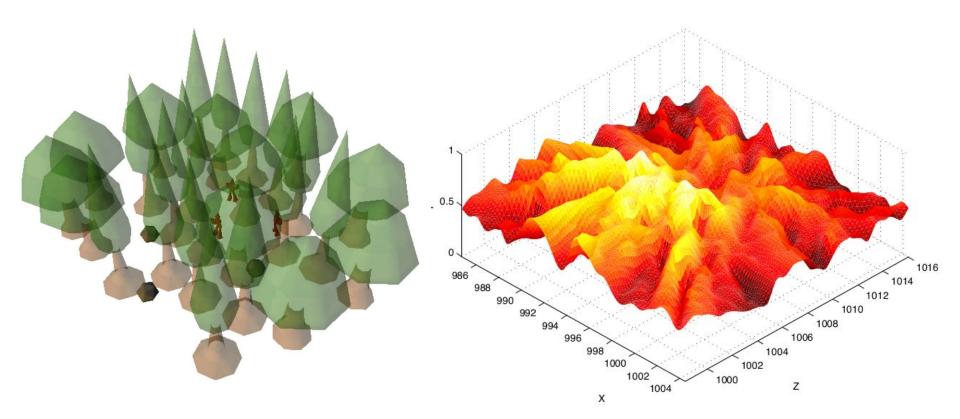

## LINEAR-JET OPTIMIZATION

#### REAL-WORLD EXAMPLES

Rudolph, Preuss, Quadflieg. <u>Two-layered surrogate</u> <u>modeling for tuning metaheuristics</u>. In *ENBIS/EMSE Conference Design and Analysis of Computer Experiments*, 2009








#### **CAMERA POSITIONING**

**REAL-WORLD EXAMPLES** 



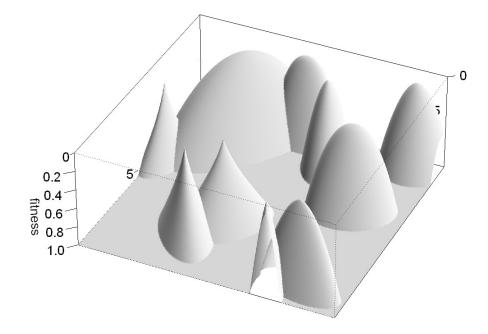
Preuss, Burelli, <u>Yannakakis. Diversified Virtual Camera Composition</u>. In EvoApplications 2012, pp. 265-274. Springer, 2012



#### MAIN RESEARCH QUESTIONS

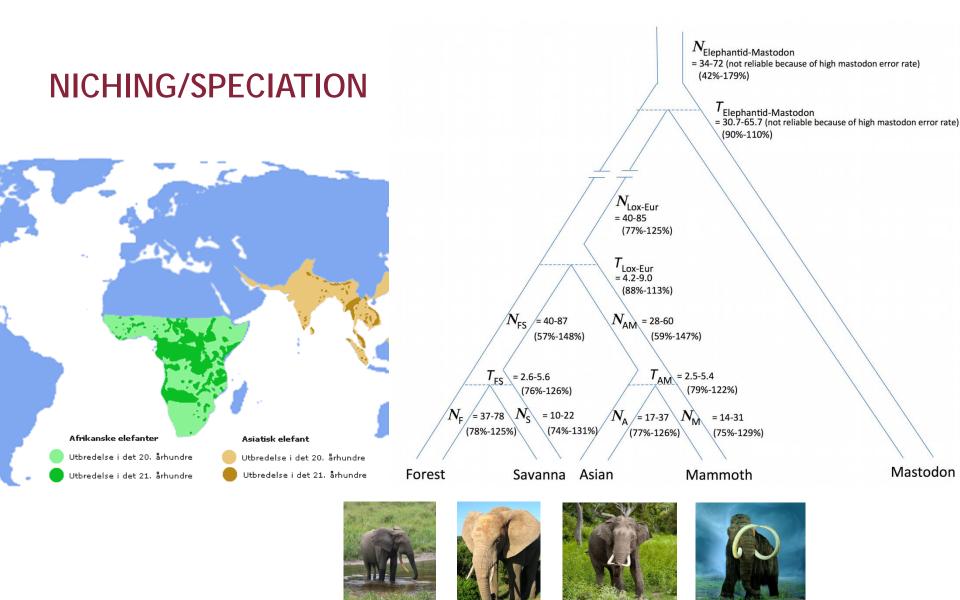


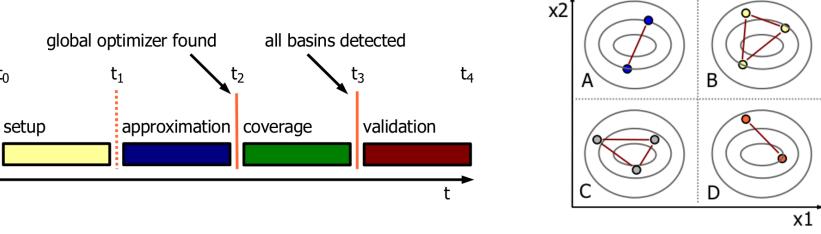
- in which situations are MMO methods actually better than "usual" EC optimization algorithms?
  - problems
  - performance measures
  - external conditions, e.g. runtime
- among different MMO methods, which one shall we choose?
- what are the limits for further improvement?


**assumption**: successful MMO needs distribution of solutions into different basins of attraction, this resembles the *niching* idea



# abstraction: niching and a model EA


#### NICHING






"Niching in EAs is a two-step procedure that a) concurrently or subsequently distributes individuals onto distinct basins of attraction and b) facilitates approximation of the corresponding (local) optimizers."

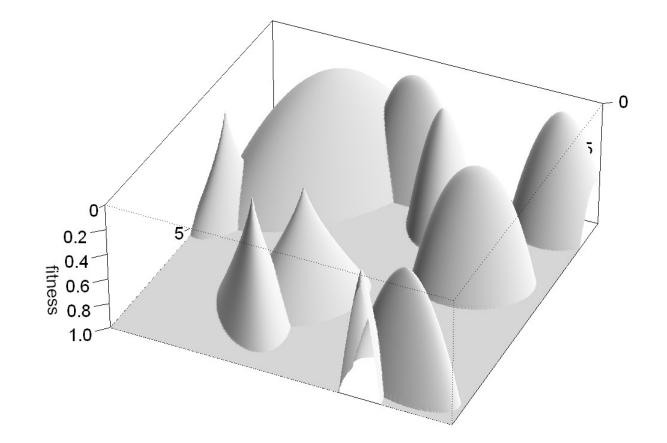
(Preuss, BIOMA 2006)





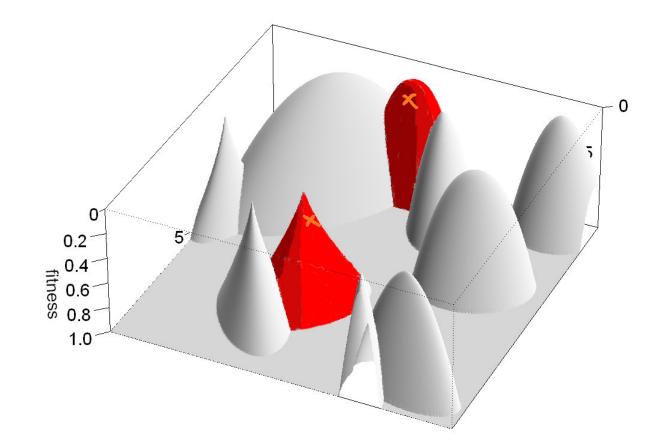
Redundancy for repeated local search and b basins (Beasley 1993):

$$R = \sum_{i=1}^{b} \frac{1}{i} \stackrel{b>3}{\approx} \gamma + \ln b \qquad with \quad \gamma \approx 0.5772$$


t<sub>0</sub>

#### **OPTIMIZATION PHASES**




#### **BASIN IDENTIFICATION/BASIN RECOGNITION**





#### **BASIN IDENTIFICATION**





#### **BASIN RECOGNITION**





# PROBABILISTIC IDENTIFICATION/RECOGNITION

- basin identification relies on detecting if two solutions are located in the same basin (binary)
- basin recognition: is the basin of a certain solution known?
- no perfect knowledge: probabilistic approach

$$p_{BI}(\mathbf{x}_1, \mathbf{x}_2) \qquad \qquad p_{BR}(\mathbf{x}_1)$$

 these express sensitivity (we do not have information about unvisited areas)

sensitivity :=  $\frac{\sum \text{true positives}}{\sum \text{true positives} + \sum \text{false negatives}}$ 

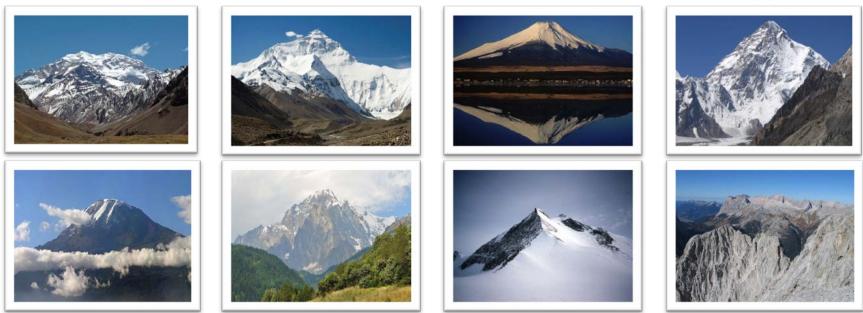




#### Algorithm 1: Niching model algorithm

1 repeat

7


- **2** | randomly distribute solutions over c of b basins;
- **3** basin identification: detect if solutions belong to same basin with probability  $p_{BI}(\mathbf{x}_1, \mathbf{x}_2)$ ;
- 4 select one solution per basin = c solutions;
- 5 forall the *c* solutions do
- **6 if** basin of c not known (probability for recognition  $p_{BR}(\mathbf{x}_1)$ ) then
  - execute local search from chosen solution;

**s until** all basins visited);

- question: how many local searches necessary to find the global optimum (t2), or
- or to visit all basins at least once (t3)?

## COUPON COLLECTOR'S PROBLEM (CCP)





given a set of 8 collector's cards, and we randomly get 3,

- how many iterations until we get one specific card? (2.67)
- or obtain all existing cards? (6.58 iterations)

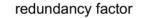
## **EXACT RESULTS**

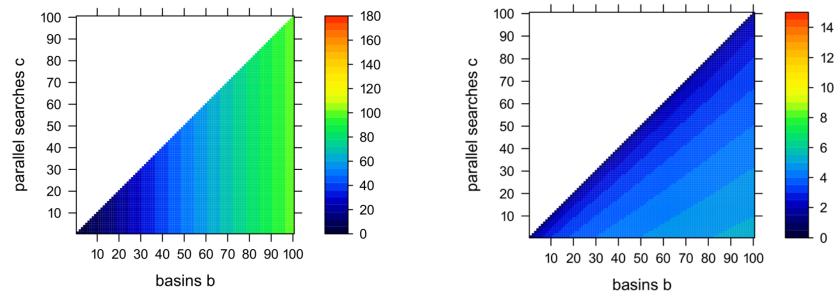
P(BI) = 1, P(BR) = 0



- under the assumption of equal probabilities (for single cards/basins), this can be computed
- formula of (Stadje. <u>The collector's problem with group drawings</u>. Advances in Applied Probability, 22(4):866-882, 1990):

n = l = 1 for  $t_2$  und n = l = b for  $t_3$ :


$$E(Z(b,l,n,c)) = {\binom{b}{c}} \sum_{j=0}^{n-1} (-1)^{n-j+1} {\binom{l}{j}} {\binom{j-j-1}{l-n}} \left[ {\binom{b}{c}} - {\binom{b-l+j}{c}} \right]^{-1}$$


- b = cards/basins per drawing,
- c = number of cards/basins
- n = desired elements of desired set, I = desired set size

#### **EXACT RESULTS**



local searches to global optimum





for  $t_2$  (l = n = 1) we obtain:

$$E(Z(b,c)) = \binom{b}{c} \left[ \binom{b-1}{c-1} \right]^{-1} = \frac{b}{c}$$

#### THIS IS SHOCKING!

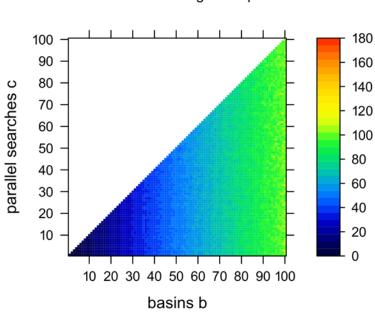


- under the equal basin size assumption, obtaining the global optimum (t2) needs on average b local searches!
- so basin identification does not make sense?

but:

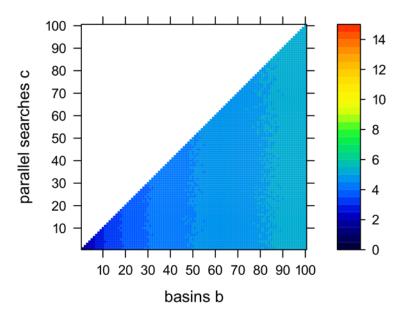
- what about basin recognition?
- equal basin sizes not realistic
- we cannot know if we have reached t2
- situation changes if we want multiple solutions

#### SUMMARIZING THE SIMPLE CASES




- we leave out perfect BR, no BI, seems unreasonable
- even under ideal circumstances, not much gain for t2
- but BI/BR help for t3:
- rationale for multimodal optimization

| BI/BR accuracy    | $E(t_2)/b$             | $E(t_3)/b$                                                              |
|-------------------|------------------------|-------------------------------------------------------------------------|
| no BI, no BR      | 1                      | $R = \sum_{i=1}^{b} \frac{1}{i} \stackrel{b>3}{\approx} \gamma + \ln b$ |
| perfect BI, no BR | 1 from Stadje equation | Stadje equation                                                         |
| perfect BI and BR | 0.5                    | 1                                                                       |


 more complex cases (unequal basin sizes, PBI/PBR not 0 or 1) have to be simulated





local searches to global optimum

redundancy factor



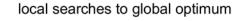
 $\mathsf{P}(\mathsf{BI}) = \mathsf{0}, \ \mathsf{P}(\mathsf{BR}) = \mathsf{0}$ 

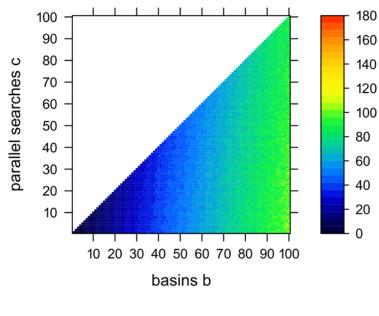


14

12

10


8


6

4

- 2

0

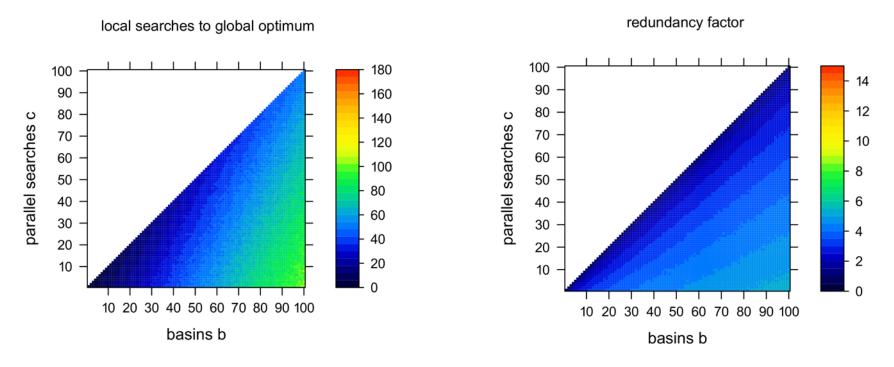




10 20 30 40 50 60 70 80 90 100

basins b

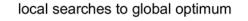
redundancy factor

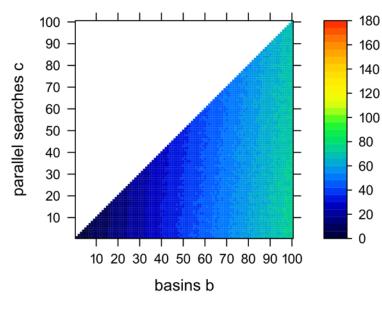

parallel searches c

20

10

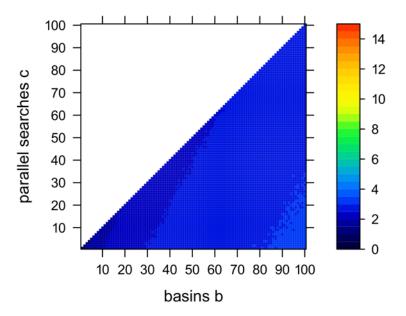
P(BI) = 0.5, P(BR) = 0




P(BI) = 1, P(BR) = 0 (this is the theoretically tractable case, the difference comes from instant stopping when reaching t2)

Multimodal Optimization Mike Preuss.







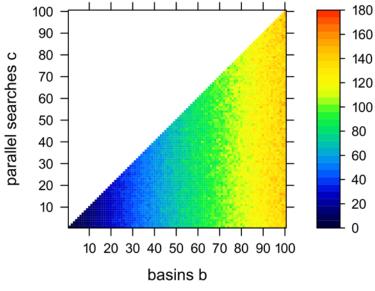

$$P(BI) = 0.5, P(BR) = 0.5$$

redundancy factor



#### **UNEQUAL BASIN SIZES?**




- why should we care?
- because size differences grow exponentially in dimensions
- IOD with 2:1 per dim makes a volume difference of 1024:1
- however, basin identification/basin recognition may be very difficult with large size differences
- we simulate abstract 1:10 size difference



- 12

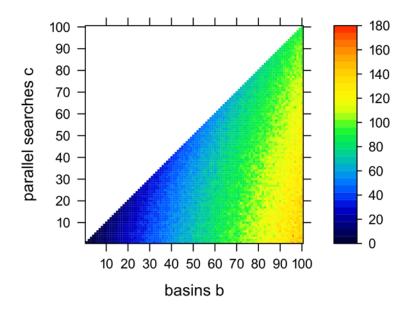
- 10

local searches to global optimum

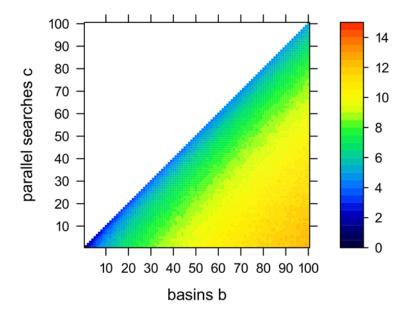


$$P(BI) = 0, P(BR) = 0$$

parallel searches c 10 20 30 40 50 60 70 80 90 100


basins b

redundancy factor

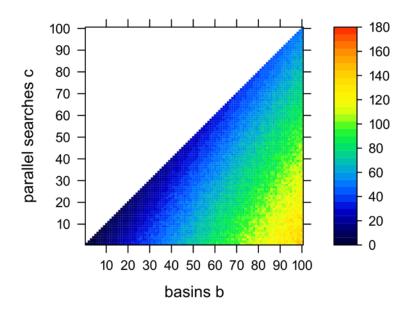

Multimodal Optimization Mike Preuss.



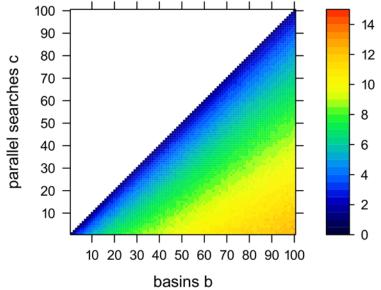
#### local searches to global optimum



redundancy factor



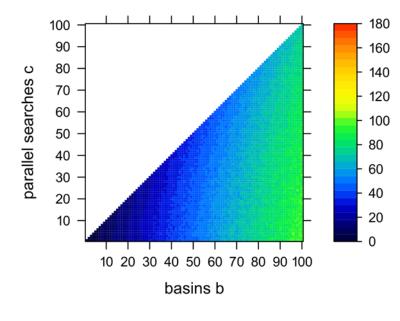

P(BI) = 0.5, P(BR) = 0


Multimodal Optimization Mike Preuss.

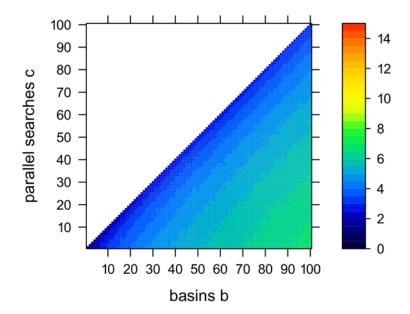


#### local searches to global optimum




redundancy factor




P(BI) = 1, P(BR) = 0



#### local searches to global optimum



redundancy factor



P(BI) = 0.5, P(BR) = 0.5

#### **MODEL EA FINDINGS**



- there are limits to possible improvements
- for equal basin sizes, t2 cannot really be improved
- t3 can be improved a lot
- for unequal basin sizes, t2 and t3 are improved by BI/BR
- basin recognition (needs archive) is more important than basin identification



## different scenarios and their measures

## MULTIMODAL OPTIMIZATION SCENARIOS



one-global: looking for the global optimum only

all-global: find all preimages of the global optimum

the problems of the CEC 2013 niching competition belong here

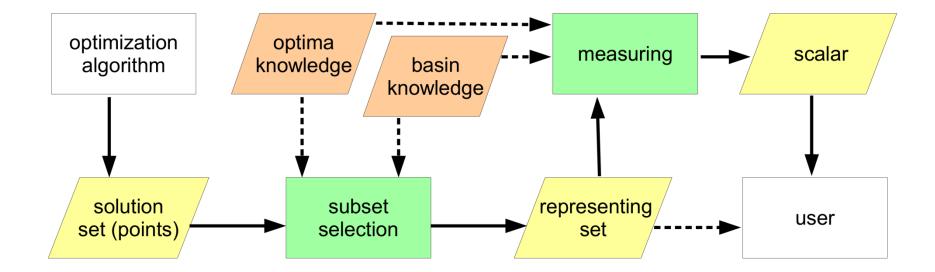
all-known: find all preimages of known optima, (local or global)

good-subset: locate a small subset of preimages of all optima that is well distributed over the search space

### **ONE-GLOBAL**



 the BBOB (black-box optimization benchmark) established the expected runtime (ERT)


$$\operatorname{ERT}(f_{\operatorname{target}}) = \operatorname{RT}_S + \frac{1 - p_s}{p_s} \operatorname{RT}_{\operatorname{US}}$$

- MMO not really well suited to one-global scenario
- this could also be applied to other scenarios, need to redefine targets

### **MEASURING PROCESS**



- 2 main components:
- subset selection
- measuring



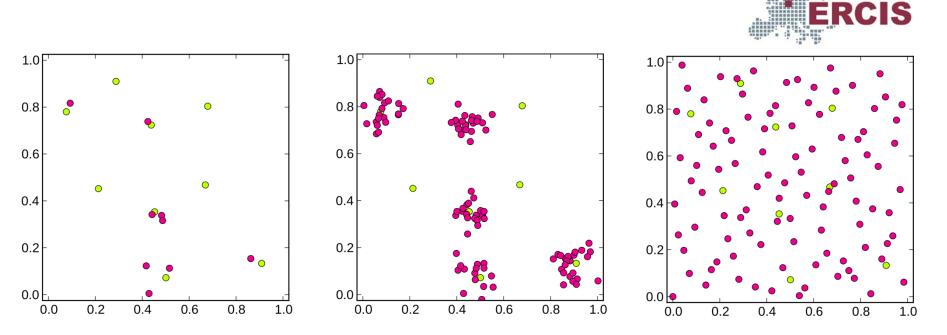




| indicator                   | short                | requires $f(\vec{x})$ | subset sel.  | optima known | basins known | param.       |
|-----------------------------|----------------------|-----------------------|--------------|--------------|--------------|--------------|
| sum of distances            | SD                   |                       |              |              |              |              |
| SD to nearest neighbor      | SDNN                 |                       |              |              |              |              |
| Solow-Polasky diversity     | $\operatorname{SPD}$ |                       |              |              |              | $\checkmark$ |
| average objective value     | AOV                  | $\checkmark$          |              |              |              |              |
| peak ratio                  | $\mathbf{PR}$        |                       | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |
| quantity-adjusted PR        | QAPR                 |                       |              | $\checkmark$ |              | $\checkmark$ |
| peak distance               | PD                   |                       | $\checkmark$ | $\checkmark$ |              |              |
| augmented PD                | APD                  | $\checkmark$          | $\checkmark$ | $\checkmark$ |              |              |
| peak accuracy               | PA                   | $\checkmark$          | $\checkmark$ | $\checkmark$ |              |              |
| averaged Hausdorff distance | AHD                  |                       |              | $\checkmark$ |              | $\checkmark$ |
| augmented AHD               | AAHD                 | $\checkmark$          |              | $\checkmark$ |              | $\checkmark$ |
| basin ratio                 | $\operatorname{BR}$  |                       | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| quantity-adjusted BR        | QABR                 |                       |              | $\checkmark$ | $\checkmark$ |              |
| basin accuracy              | BA                   | $\checkmark$          | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| representative 5 selection  | R5S                  | $\checkmark$          |              |              |              |              |

mostly used currently in literature (also for CEC'2013):

peak ratio (PR), but this is problematic


## **RECENT FINDINGS ON MMO MEASURING**

MUCH OF WHICH IS RELATED TO MULTI-OBJECTIVE MEASURING



- Solow-Polasky diversity measure heavily dependent on critical parameter
- result set size taken into account by quantity adjustment
- peak distance (PD) and averaged Hausdorff distance (AHD) can be "augmented" by adding objective values as dimension
- AHD penalizes solutions far away from any optimum
   -> trend to smaller result sets
- similar measures for basins (basin ratio, basin accuracy) can be defined if basins are known

Preuss, Wessing. <u>Measuring Multimodal Optimization Solution Sets with a View to</u> <u>Multiobjective Techniques</u>. In *EVOLVE IV*, pp. 123–137, Springer, 2013



approximation set, parallel local search, maximal exploration

- note that PR measures for the left two are similar
- PR measure for the right should be good if radius not too small

**DIFFERENT SCENARIOS** 

### PEAK RATIO CRITIQUE



- several parameters have to be set properly (e.g. radius)
- aggregation of binary measure (gradual improvement not rewarded)
- does not respect result set distribution (reached optima may all be in a small region)
- does not penalize huge result sets



### **PEAK DISTANCE (PD)**



$$PD(\mathcal{P}) := \frac{1}{k} \sum_{i=1}^{k} d_{nn}(\vec{z}_i, \mathcal{P})$$

Introduced in slightly different form in

Stoean, Preuss, Stoean, Dumitrescu. Multimodal optimization by means of a topological species conservation algorithm. IEEE TEC 14(6) (2010) 842-864

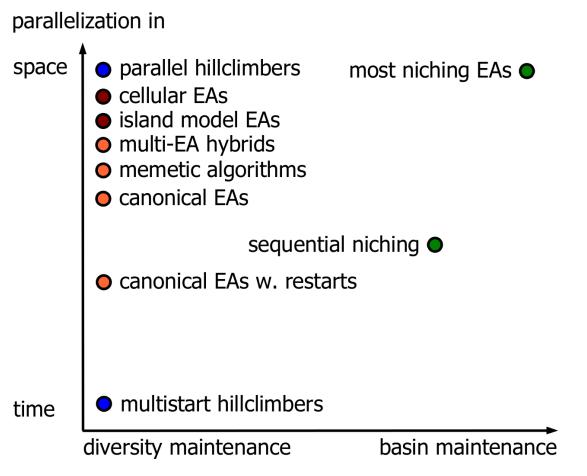
- for every optimum, looks for nearest element in population P
- similar to inverted generational distance as known in MOO
- Iarge result sets are not penalized (needs subset selection)
- no parameter needed, gradual improvement measured

### AVERAGED HAUSDORFF DISTANCE



$$\begin{aligned} \operatorname{AHD}(\mathcal{P}) &\coloneqq \Delta_p(\mathcal{P}, \mathcal{Q}) \\ &= \max\left\{ \left( \frac{1}{k} \sum_{i=1}^k d_{\operatorname{nn}}(\vec{z}_i, \mathcal{P})^p \right)^{1/p}, \left( \frac{1}{\mu} \sum_{i=1}^\mu d_{\operatorname{nn}}(\vec{x}_i, \mathcal{Q})^p \right)^{1/p} \right\}. \\ \operatorname{AHD}(\mathcal{P}) &\stackrel{p=1}{\coloneqq} \Delta_p(\mathcal{P}, \mathcal{Q}) \\ &= \max\left\{ \frac{1}{k} \sum_{i=1}^k d_{\operatorname{nn}}(\vec{z}_i, \mathcal{P}), \frac{1}{\mu} \sum_{i=1}^\mu d_{\operatorname{nn}}(\vec{x}_i, \mathcal{Q}) \right\}. \end{aligned}$$

- we set p=1 here (parameter used to penalize outliers)
- max of peak distance and reverse component (for every solution, find nearest optimum)


• originally introduced for multi-objective optimization (MOO) in Schütze, Esquivel, Lara, Coello Coello: Using the averaged hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation 16(4) (2012) 504-522



# taxonomy of methods

### **GENERAL METHOD OVERVIEW**





### WHAT NICHING CAN DO



- we assume that some sort of niching is necessary for MMO
- niching is meant as paradigm used to "organize search with respect to basins of attraction"
- it helps to avoid 2 problems:

*"Type I Error, Local search will be repeated in some region of attraction.* 

Type II Error, Local search will not start in some region of attraction even if a sample point has been located in that region of attraction."

this statement comes from an early global optimization work: Ali, Storey. <u>Topographical multilevel single linkage</u>. Journal of Global Optimization, 5(4):349-358, 1994.

### NICHING BASED CLASSIFICATION



- A. Explicit basin identification: mapping from search space to basins for determining the basin any location in the search space belongs to
- B. Basin avoidance (implicit basin identification or basin recognition): avoid search in known regions
- C. Diversity maintenance: spread out search while ignoring topology. Also constrained information exchange without explicit relation bot basins, e.g., by subpopulations or mating restrictions

### NICHING BASED TAXONOMY I



| year | method name                                      | author     | class        | dist.        | obj.         | k var        | basic technique           |
|------|--------------------------------------------------|------------|--------------|--------------|--------------|--------------|---------------------------|
| 1970 | alg. of Becker and Lago                          | Becker     | А            | $\checkmark$ | i            | $\checkmark$ | density based clustering  |
| 1973 | Törn's LC algorithm                              | Toern      | А            | $\checkmark$ | i            | $\checkmark$ | density based clustering  |
| 1975 | crowding                                         | DeJong     | $\mathbf{C}$ |              |              |              | local selection           |
| 1984 | single linkage GOA                               | Timmer     | А            | $\checkmark$ | i            | $\checkmark$ | single linkage clustering |
| 1984 | multi level single linkage                       | Timmer     | А            | $\checkmark$ | $\checkmark$ | $\checkmark$ | topological & single-link |
| 1987 | sharing                                          | Goldberg   | С            |              |              |              | selection modification    |
| 1992 | topographical GO                                 | Toern      | А            | $\checkmark$ | $\checkmark$ | $\checkmark$ | topological               |
| 1993 | sequential niching                               | Beasley    | В            |              |              | $\checkmark$ | derating                  |
| 1993 | adaptive clustering                              | Yin        | А            | $\checkmark$ |              |              | k-means                   |
| 1994 | tagging                                          | Spears     | С            |              |              | $\checkmark$ | randomized                |
| 1996 | dynamic peak identificat.                        | Miller     | А            | $\checkmark$ | i            | $\checkmark$ | single-link               |
| 1996 | clearing                                         | Petrowski  | А            | $\checkmark$ | i            | $\checkmark$ | single-link               |
| 1998 | UEGO                                             | Jelasity   | А            | $\checkmark$ | $\checkmark$ | $\checkmark$ | topological & single-link |
| 1998 | $\operatorname{SGA-CL}$                          | Hanagandi  | А            | $\checkmark$ | i            | $\checkmark$ | density based/Törn LC     |
| 1999 | hill-valley method                               | Ursem      | А            |              | $\checkmark$ | $\checkmark$ | topological               |
| 1999 | shifting balance GA                              | Oppacher   | В            | $\checkmark$ |              | $\checkmark$ | island location control   |
| 1999 | classificat. tree speciation                     | Petrowski  | А            | $\checkmark$ | $\checkmark$ | $\checkmark$ | topological               |
| 1999 | dynamic niche method                             | Gan        | А            | $\checkmark$ | i            | $\checkmark$ | topological               |
| 2000 | $\kappa(\mu(	au)/ ho,\lambda)	ext{-}\mathrm{ES}$ | Aichholzer | А            | $\checkmark$ |              | $\checkmark$ | complete linkage          |
| 2001 | DNM wt. hill-valley                              | Gan        | А            | $\checkmark$ | $\checkmark$ | $\checkmark$ | topological               |
| 2002 | NichePSO                                         | Brits      | А            | $\checkmark$ | $\checkmark$ | $\checkmark$ | stagnation & single-link  |
| 2002 | DNM/niche linkage                                | Gan        | А            | $\checkmark$ | $\checkmark$ | $\checkmark$ | topological & single-link |
| 2002 | species conservation                             | Li         | А            | $\checkmark$ | i            | $\checkmark$ | single-link               |

### NICHING BASED TAXONOMY II



| year | method name                           | author                | class        | dist.        | obj.         | k var        | basic technique           |
|------|---------------------------------------|-----------------------|--------------|--------------|--------------|--------------|---------------------------|
| 2003 | clustering based niching              | Streichert            | А            | $\checkmark$ |              | $\checkmark$ | single-link               |
| 2004 | clustered genetic search              | Schaefer              | А            | $\checkmark$ | i            | $\checkmark$ | density based clustering  |
| 2005 | ES dynamic niching                    | Shir 2005             | А            | $\checkmark$ | i            |              | single-link               |
| 2005 | nearest-better clustering             | Preuss                | А            | $\checkmark$ | $\checkmark$ | $\checkmark$ | topological               |
| 2005 | sample-based crowding                 | Ando                  | А            |              | $\checkmark$ | $\checkmark$ | topological               |
| 2005 | DE species conservation               | Li                    | А            | $\checkmark$ | i            | $\checkmark$ | single-link               |
| 2006 | DNM wt. recursive middl.              | Yao                   | А            | $\checkmark$ | $\checkmark$ | $\checkmark$ | topological               |
| 2006 | ES adaptive niching                   | Shir                  | А            | $\checkmark$ | i            |              | adaptive single-link      |
| 2006 | adaptive niching PSO                  | Bird                  | А            | $\checkmark$ |              | $\checkmark$ | adaptive single-link      |
| 2007 | fitness-euclidean dist.ratio          | Li                    | А            | $\checkmark$ | $\checkmark$ | $\checkmark$ | topological               |
| 2007 | roaming                               | Lung                  | А            | $\checkmark$ | $\checkmark$ | $\checkmark$ | topological & single-link |
| 2007 | topological species cons.             | Stoean                | А            |              | $\checkmark$ | $\checkmark$ | topological               |
| 2010 | ES shape adaptive niching             | $\operatorname{Shir}$ | А            | $\checkmark$ | i            |              | adaptive single-link      |
| 2010 | topological species cons. $2$         | Stoean                | А            | i            | $\checkmark$ | $\checkmark$ | topological               |
| 2011 | dynamic archive                       | Zhai                  | А            | $\checkmark$ | $\checkmark$ | $\checkmark$ | adapt. slink/stagnation   |
| 2011 | NOAH                                  | Ulrich                | $\mathbf{C}$ | $\checkmark$ |              |              | density based removal     |
| 2012 | nearest-better clustering 2           | Preuss                | А            | $\checkmark$ | $\checkmark$ | $\checkmark$ | topological               |
| 2012 | neighborhood based SC                 | ${ m Qu}$             | А            | $\checkmark$ | i            | $\checkmark$ | single-link               |
| 2012 | $\operatorname{multiobjectivization}$ | Deb                   | А            | $\checkmark$ | $\checkmark$ | $\checkmark$ | topological               |
| 2013 | dADE/nrand/1                          | Epitropakis           | А            | $\checkmark$ | $\checkmark$ | $\checkmark$ | adaptive single-link      |

### SOME FINDINGS



- many early "niching methods" are not class A niching methods
- the number of used techniques is limited: single-link, density based clustering, topological methods, archives appear often
- there are many A methods using distances, objective values and can handle a variable number of optima/basins
- early global optimization methods (e.g. Timmers' multi-level single linkage) may make good MMO algorithms
- there is nothing like BBOB (many algorithms comparisons) here

### **SEQUENTIAL NICHING**



- parallelizes in time (sequential)
- basically restarted local search
- modifies objective function to avoid known basins (derating)
- related to "tunneling"
- comes with the same problems: basins are not exactly known
  - optima may not be completely hidden
  - new optima may be introduced unintendedly

Beasley, Bull, Martin. A sequential niche technique for multimodal function optimization. Evolutionary Computation, 1(2):101–125, 1993

### **RADIUS-BASED APPROACHES**



- Niching Evolution Strategy (or Niching-CMA-ES) as example
- uses DPI (dynamic peak identification), fittest first ordering
- for every search point, we check if distance to any existing peak is < preset radius</p>
- $(1 + \lambda)$  is executed for every peak (in parallel)
- fixed number of niches
- extensions: shape learning, step size / radius coupling

Shir. Niching in Derandomized Evolution Strategies and its Applications in Quantum Control. PhD thesis, Universiteit Leiden, 2008

### EARLY GLOBAL OPTIMIZATION METHODS

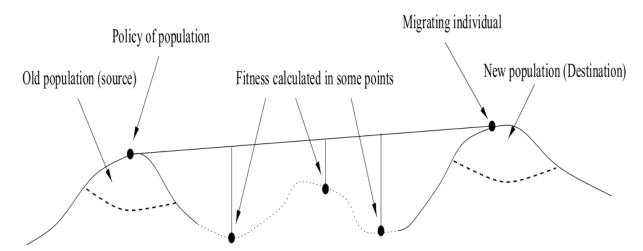


- multi-level single-linkage (MLSL) uses a method very similar to DPI, but more than 10 years earlier
- a theoretically motivated radius separates "species"
- from an initial sample, local searches are executed to find the optima that belong to the starting set samples
- detects" the number of optima by itself
- only used as global optimization algorithm, not for MMO

Rinnooy Kan, Boender, Timmer. A stochastic approach to global optimization. Technical Report WP1602-84, 1984.

### MORE GLOBAL OPTIMIZATION METHODS



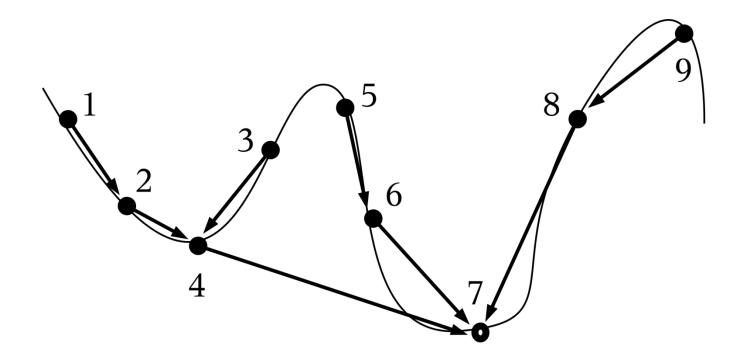

- topographical global optimization (TGO) does away with radius
- uses the k-topograph (connect each point to all of k nearest neighbors that are worse) instead
- points without incoming connections are seen as near to local optima, used as start points for local search
- k usually > 8, so that only few local optima can be identified
- some published improvements, never used for MMO

Törn, Viitanen. Topographical global optimization. In Recent Advances in Global Optimization, pp. 384–398. Princeton University Press, 1992

### **TOPOLOGICAL SEPARATION**

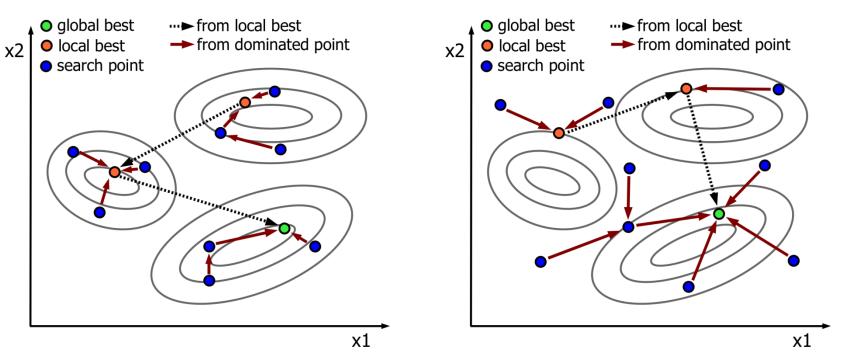


- uses objective values and distances to detect basins
- best known heuristic by Ursem: hill-valley method
- needs additional function evaluations
- Imitation: all geometric methods bad in dimensions (>>10D)




Ursem. Multinational evolutionary algorithms. In Proceedings of the Congress of Evolutionary Computation (CEC-99), pp. 1633-1640, 1999. IEEE Press

### **NEAREST-BETTER CLUSTERING**




- connect every solution to nearest one that is better
- longest edges are connections between optima



## **NEAREST-BETTER CLUSTERING**





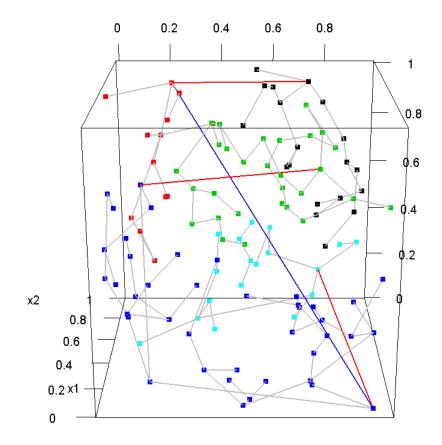
- works with clustered (left) and randomized (right) samples
- needs heuristic to remove "the right" longest edges

### NBC ALGORITHM WITH RULE 2



Algorithm 1: Nearest-better clustering (NBC) with rule 2

- 1 compute all search points mutual distances;
- **2** create an empty graph with num(*search points*) nodes;
  - // make spanning tree:
- 3 forall the search points do
- 4 | find nearest search point that is better; create edge to it;


// cut spanning tree into clusters:

- **5 RULE1:** delete edges of length  $> \phi \cdot \text{mean}(lengths of all edges);$
- 6 RULE2: forall the search points with at least 3 incoming and 1 outgoing edge do
- 7 | if length(outgoing edge)/median(length(incoming edges)) > b then
- **s** cut outgoing edge;
  - // find clusters:

9 find connected components;

### NBC EXAMPLE CLUSTERING





# NICHING EVOLUTIONARY ALGORITHM 2

ITERATED SEQUENTIAL ALGORITHM TYPE

#### Algorithm 1: NEA2

- 1 distribute an evenly spread sample over the search space;
- ${\bf 2}\,$  apply NBC: separate sample into populations according to clusters;
- $\mathbf{3}$  forall the *populations* do
- 4 run local optimization (e.g. CMA-ES) until stop criterion is hit;

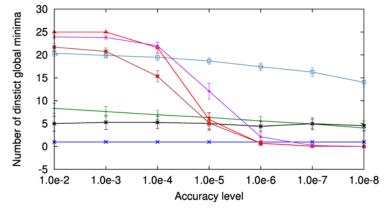
// start all over:

- 5 if !termination then
- **6** goto step 1
- most flexible with iterations of clustering + local optimization
- can be improved e.g. with archive, but not always successfull
- for real-valued optimization, CMA-ES is used
- not very dependent on parameters




## DE -> DE/NRAND/1

WITH MATERIAL PROVIDED BY MICHAEL EPITROPAKIS



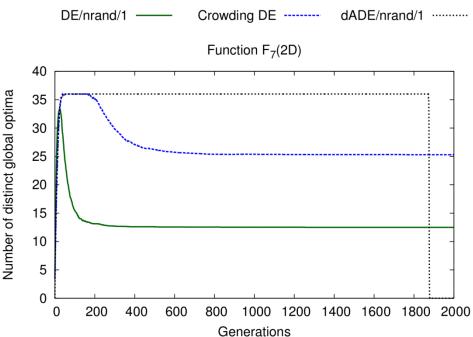

- DE/rand/1 already shows ability to "hold" many optima in the population
- Instead of an individual we employ its nearest neighbor as base



| FERPSO ——     | DE/nrand/1    | DELS - |
|---------------|---------------|--------|
| DE/rand/1 —×— | DE/nrand/2 —  |        |
| DE/rand/2 —*— | Crowding DE — |        |

Number of dinstict global minima for the  $F_7$  function (25 global minima)




Epitropakis, Plagianakos, Vrahatis. Finding multiple global optima exploiting differential evolution's niching capability. 2011 IEEE Symposium on Differential Evolution (SDE)

### DE/NRAND/1 -> DADE/NRAND/1

PARALLEL METHOD

- addition of a parameter adaptation method for F and CR, taken from JADE
- addition of dynamic archive:
- put only better solutions in
- if near better contained, re-initialize individual
- identification radius R adapted during run
- much better performance

Epitropakis, Li, Burke. A Dynamic Archive Niching Differential Evolution Algorithm for Multimodal Optimization. CEC 2013

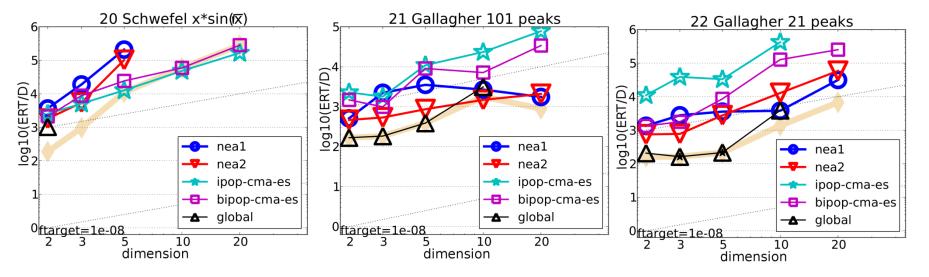






# results/competition/software

### TEST PROBLEMS/BENCHMARK SETS




- BBOB collection for global optimization: <u>http://coco.gforge.inria.fr/</u>
- CEC 2013 Niching Competition Problems (20)
   a collection of known problems in different dimensions, 1D to 20D http://goanna.cs.rmit.edu.au/~xiaodong/cec13-niching/competition/
- Preuss/Lasarczyk generator: mixture of polynomials
   Preuss, Lasarczyk. On the importance of information speed in structured
   populations. In Proc. PPSN VIII, pp. 91-100, 2004, Springer
- Gallagher/Yuan generator: mixture of gaussian distributions
   Gallagher and B. Yuan. A general-purpose tunable landscape generator. IEEE Trans. Evolutionary Computation, 10(5):590-603, 2006

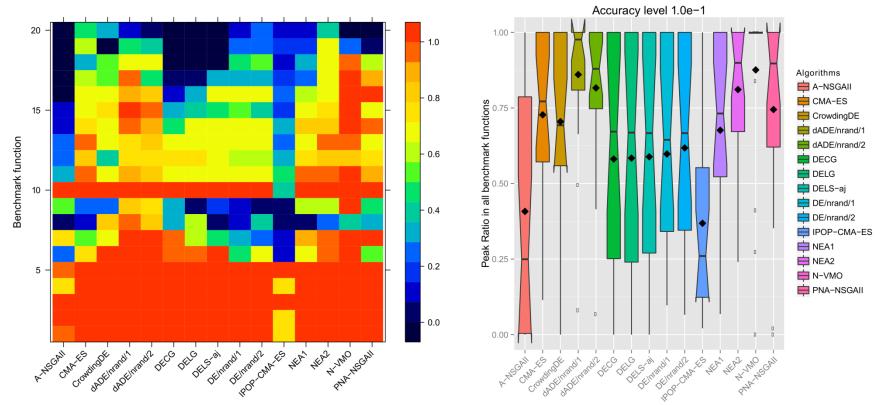
### **ONE-GLOBAL CASE**

#### SELECTED MULTIMODAL BBOB FUNCTIONS



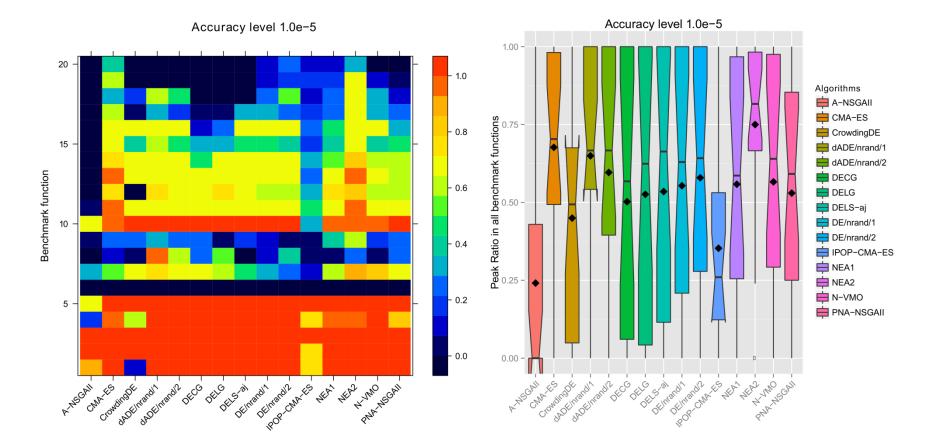


- MMO algorithm can be better than CMA-ES if topology suitable
- however, classical GO methods often better in these cases
- for global optimization, MMO algorithms not the right tool


### **ALL-GLOBAL CASE**

#### FROM THE CEC 2013 NICHING COMPETITION



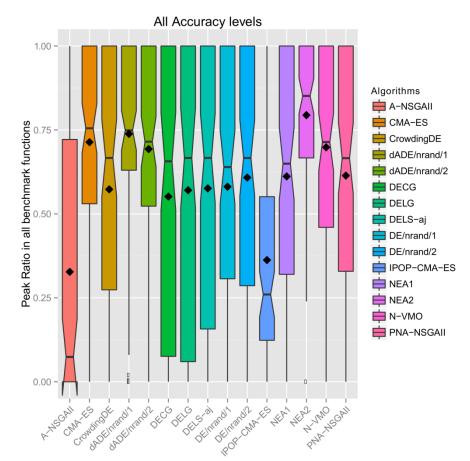

task: find all global optima (1 to 20D) with given accuracy level

Accuracy level 1.0e-1



### MORE ACCURATE, PLEASE






Multimodal Optimization Mike Preuss.

### **OVERALL ASSESSMENT**

ERCIS

- tight race between NEA2 and dADE/nrand/1
- won by the sequential method (this time)
- result depends very much on experimental setup
- critique towards PR as basic performance measure



many thanks to the CEC 2013 niching

competition team: Michael Epitropakis, Xiaodong Li and Andries Engelbrecht

Multimodal Optimization Mike Preuss.



# the future

## THINGS TO DO



- define MMO, tasks and scenarios
- improve problem libraries
- set up benchmarks for different scenarios
- agree on proper performance measures for these
- real-world motivated benchmarks?
- work on MMO algorithms, recombine components?
- MMO algorithms for non real-valued representations?

### WHERE IS THE MATERIAL FROM?



Springer book

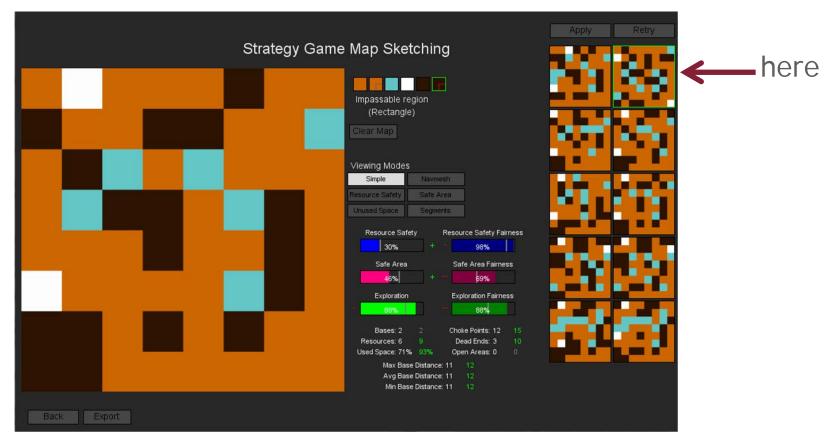
"Multimodal Optimization by Means of Evolutionary Algorithms"

(monograph on base of my dissertation)

coming out soon!

### **MMO STOPPING CRITERIA?**



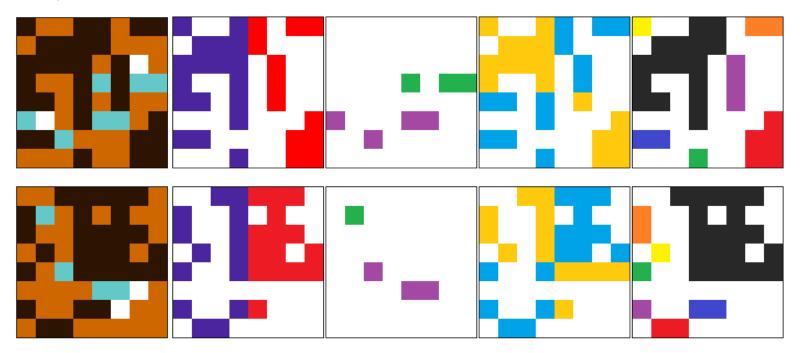

S4.2 Proc. p. 141, Tuesday 11:00Wessing, Preuss, Trautmann:Stopping Criteria for Multimodal Optimization

## MMO FOR NON REAL-VALUED PROBLEMS

A RECENT EXAMPLE FROM COMPUTATIONAL INTELLIGENCE IN GAMES



design tool for map sketches: diverse but good set needed

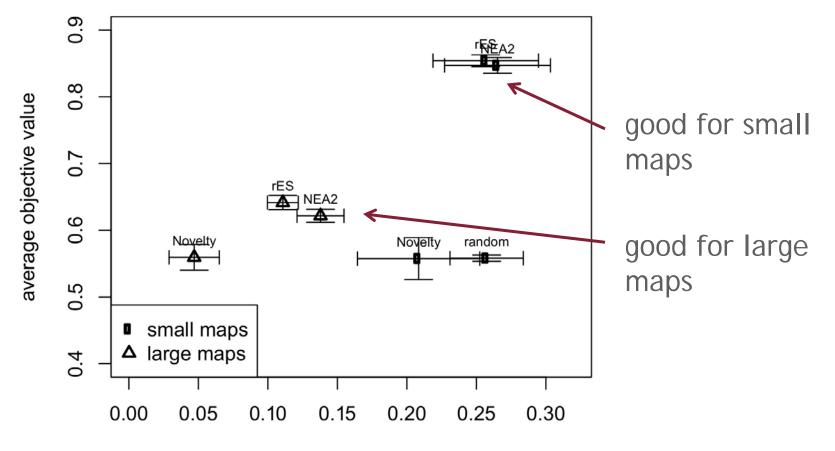



Multimodal Optimization Mike Preuss.

### **VISUAL IMPRESSION MAP DISTANCE**



(original, vertical balance of impassables+left half concentration of impassables, horizontal balance of resources+top half concentration of resources, diagonal concentration of impassables, impassable segments+largest segment)




Multimodal Optimization Mike Preuss.

### COMPARISON TO RESTART ES/MC/NOVELTY

AVG. 6 OBJECTIVES AGAINST AVG. MIN. VISUAL IMPRESSION DISTANCES





next neighbor distance

### TAKE HOME

- FIELD MUST BE DEFINED MUCH BETTER (PROBLEMS, MEASURES)<sup>Systems</sup>
- LOOK INTO GLOBAL OPTIMIZATION WORK (TOERN, RINNOY KAN, ALI) TO FIND MANY USEFUL CLUES
- MMO METHODS NOT REALLY USEFUL FOR GLOBAL OPTIMIZATION
- BUT USEFUL FOR SET OPTIMIZATION
- UNCOORDINATED RESTARTED LOCAL SEARCH GOOD BASELINE
- NEA2 AND DADE/NRAND/1 GOOD METHODS FOR MMO
- UNEXPLOITED CONNECTIONS TO MULTI-OBJECTIVE OPTIMIZATION
- APPLY MMO TO MORE NON REAL-VALUED REPRESENTATIONS!

### THE IS RESEARCH NETWORK

www.ercis.org

Center for Information