

Tutorial for Introduction to Computational Intelligence in Winter 2015/16

Günter Rudolph, Vanessa Volz Lecture website: https://tinyurl.com/CI-WS2015-16

Sheet 5, Block I Due date: 27 January 2016, 2pm Discussion: 28/29 January 2016

14 January 2016

Exercise 5.1: Variation Operations (8 Points)

- (a) Assume $x, y \in \mathbb{R}$ are individuals in a population. Let the value of x at timestep t be x_t , with $x_t = m_l(x_{t-1})$ where m_l is a local mutation operation and $x_0 = 0$. Similarly, let the value of y at timestep t be y_t , with $y_t = m_n(x_{t-1})$ where m_l is a nonlocal mutation operation and $y_0 = 0$. Choose m_l and m_n appropriately and compute all values x_t, y_t for $t \in [1, 1000]$. Plot all tuples (t, x_t) and (t, y_t) , describe the resulting graphs and explain all patterns you detect.
- (c) Now assume we have a population of two individuals $\vec{x}, \vec{y} \in \mathbb{R}^2$. They are located at $\vec{x} = (0, 0)^T$ and $\vec{y} = (1, 1)^T$. Create 1000 offspring by intermediate, intermediate per dimension, and discrete recombination from the two parents \vec{x} and \vec{y} (no mutation). Plot the offspring of each of the operators in a seperate figure and explain all patterns you detect.

Exercise 5.2: Variation Operations (8 Points)

Meet Emma. Emma is a sales person that wants to visit the cities A, B, C, D, E exactly once to sell goods. The travelling costs between the cities are defined in the following matrix, where $c_{A,B}$ is the cost to travel from city A to city B:

c	$ \begin{array}{c} A \\ 0.0 \\ 3.0 \\ 2.5 \\ 6.7 \\ 4.0 \end{array} $	B	C	D	E
A	0.0	3.0	2.5	6.7	4.0
B	3.0	0.0	1.1	6.5	5.1
C	2.5	1.1	0.0	5.5	4.0
D	6.7	6.5	5.5	0.0	3.2
E	4.0	5.1	4.0	3.2	0.0

Implement an (1+1)-EA that minimises the cost of the whole tour. Try different variation operators and parameters. What would a local optimum be in this context? Does your EA find a local or global optimum and/or converge? If it does, after how many function evaluations?

$$\begin{aligned} f_c(x_1, x_2) &= x_1^2 + x_2^2 \text{ with } (x_1, x_2) \in \mathbb{R}^2 \\ f_e(x_1, x_2) &= x_1^2 + \frac{1}{4} x_2^2 \text{ with } (x_1, x_2) \in \mathbb{R}^2 \\ f_r(x_1, x_2) &= x_1^2 + x_2^2 - 10(\cos(2\pi x_1) + \cos(2\pi x_2)) + 20 \text{ with } (x_1, x_2) \in [-5, 5]^2 \end{aligned}$$

Set up an experiment that tests the theorem from lecture 9, slide 27 for the functions f_c, f_e, f_r defined above for individuals $\vec{x}, \vec{y} \in \mathbb{R}^2$ of your choosing.