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» Euclidean space: shifted quadtree
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Recap Point Location Among Balls

* Given a point set P and a query point g, the target
ball ©p of g is the smallest ball of B that contains g

- Interval structure I(P,r,[7,e): Create rings
around each point of increasing radii (1 + )" in
interval (1, I7)

* Create a Balanced Hierarchically Separated
Tree (BHST) from the points

+ Space complexity: O((n/e)lognlog(n/e))
improved (book): O((n/e)logn)

- # of near-neighbor queries: O(log (n /<))
log n times only against r,, and R,
once |1y, Ry): O(log(n/e))
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O(log (n/e)) queries

Those queries are also hard ...
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Approximate balls
» Foraballb = b(p,r) the ball b~ isa (1 + €)-approximationto b if b C b, C
b(p, (1 +¢)r)

» For a set of balls 5, B~ is a (1 + ¢)-approximation if for all b € I5 there is an
approximation b~ € B

* How should we approximate?

The power of grids!
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Approximating the ball

 Divide the space into a grid with sides ¢

+ Define b~ (p) as the grid cells intersected by c
b(p) T~
» Throw all b~ into a hashtable . o
¢ . q - - -
* Now deciding whether point g falls into a cer- _®

tain range is easy: O(1)

+ For constant ball size this only takes O(n/e?)
space!

But we don't have constant ball sizes. ..
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Lemma Let Z.(P,r, R,c/16) be a (1 + €/16)-approximation of

Z(P,r,R,c/16)
For a query point ¢ € M if 7. returns a target set that is an approximation

of a ball in 7 centered at a point p with radius « € [r, R] then pis a
(1 +¢/4)-ANN to ¢
Proof:

p is only returned if there are two consecutive indices 2 and 7 + 1 such that g is in
the ball set of 2 4+ 1 but not in the ball set of 2

r(14+¢/16)* <d(q,P) <d(q,p) <r(l+¢/16)"" (1 +¢/16) <
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2, e? £, € __ 1 1 3¢ 4
1'16'162_1+8'16_ .16<1+
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Intermediate results

+ Given a set P of n points in R%, one can compute a set of B3 of O(%Z logn) balls

+ s.t. answering (1 4 £)-ANN queries on P can be answered by doing a single
target queryon B

» Furthermore, if we (1+4¢/16)-approximate each ball the target query becomes
easier.
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» Initial, simple construction (previous lecture): balls per pair of points

» Well Separated Pair Decomposition!
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have a multitude of uses:

* Biology Model biological structures like cells

» Hydrology Calculate the rainfall in an area based
on point measurements

» Aviation Find the nearest safe landing zone in
case of failure
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A Voronoi diagram V of a point set P C R? is a partition of space
into regions such that a cell of pointp € P is:

Vip,P) = s € R%ls—pl <|ls—9pforallp’ € P

d
However, it has complexity O n! 2 1) in R? in the worst case
P y

Can we do better?
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Definition: Approximate Voronoi Diagram

Given a set P of n points in R? and parameter ¢ > 0, a (1 + €)-Approximated
Voronoi Diagram(AVS) of P is a partition VV of R? into regions ©, s.t. for any region
p € V we have that rep,, is a (1 4 €)-ANN for z, that is:

Vo € pl|lx —rep,| < (1+¢)d(z, P)
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Approximate Nearest Neighbors in

(now fast, using approximate Voronoi diagrams)
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Fast ANN in R¢

In the following, asssume P is a set of points contained in hypercube
0.5 —¢/d, 0.5+ ¢/d]*

Guarantee by some transformation 1’

Computing ANN of g on P is equivalent to computing the ANN of T'(q) on T'( P)
If q is outside the unit hypercube [0, 1]% any p € Pis an (1 + £)-ANN

Thus only consider ANN for points inside [0, 1]¢
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Creating the AVD

Remember we can compute a set B of
O( =i+ log <) balls

Approximate b by the cells C’ that intersect it
Pick grid G'y: s.t. Vd2' < (¢/16)r
For each ball the amount of grid cells is bound by

O(z)

Create from C’ a set C such that from each instance
of [0 € C’ we pick the [0 associated to the smallest
ball

7
|
| |
| |
| |
1 |
1 |
_______ _I____I____I____I
| |
|
1 |
|
|
F—— b —
|
|

_____________
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Point location on the grids

» (14 €)-ANN — target query on B~

target query — find smallest canonical grid cell of C

store cells in compressed guadtree!

Construction: O(|C|log |C|) time
+ Space: O(|C])
- Query time: O(log |C)

N~




Point location on the grids

(1 + £)-ANN — target query on B
target query — find smallest canonical grid cell of C

store cells in compressed guadtree!

Construction: O(|C|log |C|) time
Space: O(|C])
Query time: O(log |C')

Store for each cell in a leaf the smallest ball
it belongs to

N~
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Building a compressed quadtree can be done in O(|C|log |C'|) time

B|=

O( =z log
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Approximate Voronoi diagrams with proofs on the bounds



