Approximate Voronoi Diagrams

Recap Point Location Among Balls

Recap Point Location Among Balls

 Given a point set P and a query point g, the target
ball ©p of g is the smallest ball of B that contains g

Recap Point Location Among Balls

* Given a point set P and a query point g, the target
ball ©p of g is the smallest ball of B that contains g

- Interval structure I(P,r,[7,e): Create rings
around each point of increasing radii (1 +)" in
interval (1, I7)

Recap Point Location Among Balls

* Given a point set P and a query point g, the target
ball ©p of g is the smallest ball of B that contains g

- Interval structure I(P,r,[7,e): Create rings
around each point of increasing radii (1 +)" in
interval (1, I7)

Recap Point Location Among Balls

* Given a point set P and a query point g, the target
ball ©p of g is the smallest ball of B that contains g

- Interval structure I(P,r,[7,e): Create rings
around each point of increasing radii (1 +)" in
interval (1, I7)

Recap Point Location Among Balls

* Given a point set P and a query point g, the target
ball ©p of g is the smallest ball of B that contains g

- Interval structure I(P,r,[7,e): Create rings
around each point of increasing radii (1 +)" in
interval (1, I7)

* Create a Balanced Hierarchically Separated
Tree (BHST) from the points

Recap Point Location Among Balls

* Given a point set P and a query point g, the target
ball ©p of g is the smallest ball of B that contains g

- Interval structure I(P,r,[7,e): Create rings
around each point of increasing radii (1 +)" in
interval (1, I7)

* Create a Balanced Hierarchically Separated
Tree (BHST) from the points

* bottom-up: compute MST, lowest to
heighest weight: merge components

Recap Point Location Among Balls

* Given a point set P and a query point g, the target
ball ©p of g is the smallest ball of B that contains g

- Interval structure I(P,r,[7,e): Create rings
around each point of increasing radii (1 +)" in
interval (1, I7)

* Create a Balanced Hierarchically Separated
Tree (BHST) from the points

* bottom-up: compute MST, lowest to
heighest weight: merge components

» Euclidean space: shifted quadtree

Recap Point Location Among Balls

* Given a point set P and a query point g, the target
ball ©p of g is the smallest ball of B that contains g

- Interval structure I(P,r,[7,e): Create rings
around each point of increasing radii (1 +)" in
interval (1, I7)

* Create a Balanced Hierarchically Separated
Tree (BHST) from the points

+ Space complexity: O((n/e)lognlog(n/e))

Recap Point Location Among Balls

* Given a point set P and a query point g, the target
ball ©p of g is the smallest ball of B that contains g

- Interval structure I(P,r,[7,e): Create rings
around each point of increasing radii (1 +)" in
interval (1, I7)

* Create a Balanced Hierarchically Separated
Tree (BHST) from the points

+ Space complexity: O((n/e)lognlog(n/e))

per interval structure:

O(ny /elog(n®M /e) = O(n, /e log(n/e))

Recap Point Location Among Balls

* Given a point set P and a query point g, the target
ball ©p of g is the smallest ball of B that contains g

- Interval structure I(P,r,[7,e): Create rings
around each point of increasing radii (1 +)" in
interval (1, I7)

* Create a Balanced Hierarchically Separated
Tree (BHST) from the points

+ Space complexity: O((n/e)lognlog(n/e))

per interval structure:

O(ny /elog(n®M /e) = O(n, /e log(n/e))

points occur up to log n times

Recap Point Location Among Balls

* Given a point set P and a query point g, the target
ball ©p of g is the smallest ball of B that contains g

- Interval structure I(P,r,[7,e): Create rings
around each point of increasing radii (1 +)" in
interval (1, I7)

* Create a Balanced Hierarchically Separated
Tree (BHST) from the points

+ Space complexity: O((n/e)lognlog(n/e))
improved (book): O((n/e)logn)

Recap Point Location Among Balls

* Given a point set P and a query point g, the target
ball ©p of g is the smallest ball of B that contains g

- Interval structure I(P,r,[7,e): Create rings
around each point of increasing radii (1 +)" in
interval (1, I7)

* Create a Balanced Hierarchically Separated
Tree (BHST) from the points

+ Space complexity: O((n/e)lognlog(n/e))
improved (book): O((n/e)logn)
- # of near-neighbor queries: O(log (n /<))

Recap Point Location Among Balls

* Given a point set P and a query point g, the target
ball ©p of g is the smallest ball of B that contains g

- Interval structure I(P,r,[7,e): Create rings
around each point of increasing radii (1 +)" in
interval (1, I7)

* Create a Balanced Hierarchically Separated
Tree (BHST) from the points

+ Space complexity: O((n/e)lognlog(n/e))
improved (book): O((n/e)logn)

- # of near-neighbor queries: O(log (n /<))
log n times only against r,, and R,

Recap Point Location Among Balls

* Given a point set P and a query point g, the target
ball ©p of g is the smallest ball of B that contains g

- Interval structure I(P,r,[7,e): Create rings
around each point of increasing radii (1 +)" in
interval (1, I7)

* Create a Balanced Hierarchically Separated
Tree (BHST) from the points

+ Space complexity: O((n/e)lognlog(n/e))
improved (book): O((n/e)logn)

- # of near-neighbor queries: O(log (n /<))
log n times only against r,, and R,
once |1y, Ry): O(log(n/e))

Caveat

O(log (n/€)) queries

Caveat

O(log (n/e)) queries

Those queries are also hard ...

Approximate balls

» Foraballb = b(p,r)theball b~ is a (1 4)-approximationto b if b C b~ C
b(p, (1 +¢&)r)

Approximate balls

» Foraballb = b(p,r) the ball b~ isa (1 + €)-approximationto b if b C b, C
b(p, (1 +¢)r)

» For a set of balls 5, B~ is a (1 + ¢)-approximation if for all b € I5 there is an
approximation b~ € B

Approximate balls
» Foraballb = b(p,r)theball b~ is a (1 4)-approximationto b if b C b~ C
b(p, (1 +¢&)r)

» For a set of balls 5, B~ is a (1 + ¢)-approximation if for all b € I5 there is an
approximation b~ € B

* How should we approximate?

Approximate balls
» Foraballb = b(p,r) the ball b~ isa (1 + €)-approximationto b if b C b, C
b(p, (1 +¢)r)

» For a set of balls 5, B~ is a (1 + ¢)-approximation if for all b € I5 there is an
approximation b~ € B

* How should we approximate?

The power of grids!

Approximating the ball

Approximating the ball

 Divide the space into a grid with sides ¢

Approximating the ball

 Divide the space into a grid with sides ¢
+ Define b~ (p) as the grid cells intersected by

b(p) o

Approximating the ball

 Divide the space into a grid with sides ¢
+ Define b~ (p) as the grid cells intersected by c

b(p) T~
» Throw all b, into a hashtable ;

Approximating the ball

Divide the space into a grid with sides ¢

+ Define b~ (p) as the grid cells intersected by c
b(p) T~
» Throw all b~ into a hashtable . o
¢ . q - - -
* Now deciding whether point g falls into a cer- _®

tain range is easy: O(1)

Approximating the ball

 Divide the space into a grid with sides ¢

+ Define b~ (p) as the grid cells intersected by c
b(p) T~
» Throw all b~ into a hashtable . o
¢ . q - - -
* Now deciding whether point g falls into a cer- _®

tain range is easy: O(1)

+ For constant ball size this only takes O(n/e?)
space!

Approximating the ball

 Divide the space into a grid with sides ¢

+ Define b~ (p) as the grid cells intersected by c
b(p) T~
» Throw all b~ into a hashtable . o
¢ . q - - -
* Now deciding whether point g falls into a cer- _®

tain range is easy: O(1)

+ For constant ball size this only takes O(n/e?)
space!

But we don't have constant ball sizes. ..

Approximate interval structure

Lemma Let Z.(P,r, R,c/16) be a (1 + €/16)-approximation of
Z(P,r,R,c/16)

Approximate interval structure

Lemma Let Z.(P,r, R,c/16) be a (1 + €/16)-approximation of
Z(P,r,R,c/16)

For a query point ¢ € M if 7. returns a target set that is an approximation
of a ball in 7 centered at a point p with radius « € [r, R] then pis a

(1 +¢/4)-ANN to ¢

Approximate interval structure

Lemma Let Z.(P,r, R,c/16) be a (1 + €/16)-approximation of

Z(P,r,R,c/16)
For a query point ¢ € M if 7. returns a target set that is an approximation

of a ball in 7 centered at a point p with radius « € [r, R] then pis a
(1 +¢/4)-ANN to ¢

Proof:

Approximate interval structure

Lemma Let Z.(P,r, R,c/16) be a (1 + €/16)-approximation of

Z(P,r,R,c/16)
For a query point ¢ € M if 7. returns a target set that is an approximation

of a ball in 7 centered at a point p with radius « € [r, R] then pis a
(1 +¢/4)-ANN to ¢

Proof:
p is only returned if there are two consecutive indices 2 and 7 + 1 such that g is in
the ball set of 2 4+ 1 but not in the ball set of 2

Approximate interval structure

Lemma Let Z.(P,r, R,c/16) be a (1 + €/16)-approximation of

Z(P,r,R,c/16)
For a query point ¢ € M if 7. returns a target set that is an approximation

of a ball in 7 centered at a point p with radius « € [r, R] then pis a
(1 +¢/4)-ANN to ¢
Proof:

p is only returned if there are two consecutive indices 2 and 7 + 1 such that g is in
the ball set of 2 4+ 1 but not in the ball set of 2

r(14+¢/16)* <d(q, P) <d(q,p) <r(1+¢/16)"T1(1+¢£/16) <
(1+¢/16)%d(q, P) < (1 +¢/4)d(q, P)

Approximate interval structure

Lemma Let Z.(P,r, R,c/16) be a (1 + €/16)-approximation of

Z(P,r,R,c/16)
For a query point ¢ € M if 7. returns a target set that is an approximation

of a ball in 7 centered at a point p with radius « € [r, R] then pis a
(1 +¢/4)-ANN to ¢

Proof:
p is only returned if there are two consecutive indices 2 and 7 + 1 such that g is in
the ball set of 2 4+ 1 but not in the ball set of 2

r(1+¢/16)" <d(q,P) <d(q,p) <[r(1 + 6/16)i“1|(1 -+ 6/16)"§
(1+¢/16)%d(q, P) < (1 +¢/4)d(q, P)

Approximation from using balls
Approximation from approximating the balls

Approximate interval structure

Lemma Let Z.(P,r, R,c/16) be a (1 + €/16)-approximation of

Z(P,r,R,c/16)
For a query point ¢ € M if 7. returns a target set that is an approximation

of a ball in 7 centered at a point p with radius « € [r, R] then pis a
(1 +¢/4)-ANN to ¢

Proof:
p is only returned if there are two consecutive indices 2 and 7 + 1 such that g is in
the ball set of 2 4+ 1 but not in the ball set of 2

r(1+¢/16)" <[d(q, P)I< d(q.p) <[r(1 F£&/16) (1 +£/16) <
(1 +¢/16)%d(g, P)|< (14 ¢/4)d(q, P)

Substitute

Approximate interval structure

Lemma Let Z.(P,r, R,c/16) be a (1 + €/16)-approximation of

Z(P,r,R,c/16)
For a query point ¢ € M if 7. returns a target set that is an approximation

of a ball in 7 centered at a point p with radius « € [r, R] then pis a
(1 +¢/4)-ANN to ¢
Proof:

p is only returned if there are two consecutive indices 2 and 7 + 1 such that g is in
the ball set of 2 4+ 1 but not in the ball set of 2

r(14+¢/16)* <d(q,P) <d(q,p) <r(l+¢/16)"" (1 +¢/16) <
(1+¢/16)°d(q, P) < (1+¢&/4)d(q, P)

2, e? £, € __ 1 1 3¢ 4
1'16'162_1+8'16_ .16<1+

Intermediate results

Intermediate results

+ Given a set P of n points in R%, one can compute a set of B3 of O(%Z logn) balls

Intermediate results

+ Given a set P of n points in R%, one can compute a set of B3 of O(%Z logn) balls

+ s.t. answering (1 4 £)-ANN queries on P can be answered by doing a single
target queryon B

Intermediate results

+ Given a set P of n points in R%, one can compute a set of B3 of O(%Z logn) balls

+ s.t. answering (1 4 £)-ANN queries on P can be answered by doing a single
target queryon B

» Furthermore, if we (1+4¢/16)-approximate each ball the target query becomes
easier.

Improvements in low dimensions (for large ¢)

Improvements in low dimensions (for large ¢)

» Initial, simple construction (previous lecture): balls per pair of points

Improvements in low dimensions (for large ¢)

» Initial, simple construction (previous lecture): balls per pair of points

Improvements in low dimensions (for large ¢)

» Initial, simple construction (previous lecture): balls per pair of points

» Well Separated Pair Decomposition!

Improvements in low dimensions

Improvements in low dimensions

» Construct a (¢/g)-WSPD W of P, where c is sufficiently large

Improvements in low dimensions

» Construct a (¢/g)-WSPD W of P, where c is sufficiently large
+ The number of pairs in a WSPD is O(%)

» For every pair {u, v} € W compute B(rep,, rep,) and add it to 5 where:

Improvements in low dimensions

» Construct a (¢/g)-WSPD W of P, where c is sufficiently large
+ The number of pairs in a WSPD is O(%)

» For every pair {u, v} € W compute B(rep,, rep,) and add it to 5 where:
B(rep.,rep,) = {b(rep,,r),b(rep,,r)|r = (1 +¢/3)* € J(u,v)}

Improvements in low dimensions

» Construct a (¢/g)-WSPD W of P, where c is sufficiently large
+ The number of pairs in a WSPD is O(%)

» For every pair {u, v} € W compute B(rep,, rep,) and add it to 5 where:
B(rep.,rep,) = {b(rep,,r),b(rep,,r)|r = (1 +¢/3)* € J(u,v)}

Improvements in low dimensions

Construct a (¢/e)-WSPD WV of P, where c is sufficiently large

The number of pairs in a WSPD is O()

For every pair {u,v} € W compute B(rep,,, rep,) and add it to B where:
B(rep.,rep,) = {b(rep,,r),b(rep,,r)|r = (1 +¢/3)* € J(u,v)}

and
T (u,v) =[5, 2] - |[repy — repy|

We have O(Z log 1) balls per pair

€

Improvements in low dimensions

Construct a (¢/e)-WSPD WV of P, where c is sufficiently large

The number of pairs in a WSPD is O()

For every pair {u,v} € W compute B(rep,,, rep,) and add it to B where:
B(rep.,rep,) = {b(rep,,r),b(rep,,r)|r = (1 +¢/3)* € J(u,v)}

and
T (u,v) =[5, 2] - |[repy — repy|

We have O(Z log 1) balls per pair

€

Bl = O(log 2)

Improvements in low dimensions

Construct a (¢/e)-WSPD WV of P, where c is sufficiently large

The number of pairs in a WSPD is O()

For every pair {u,v} € W compute B(rep,,, rep,) and add it to B where:
B(rep.,rep,) = {b(rep,,r),b(rep,,r)|r = (1 +¢/3)* € J(u,v)}

and
T (u,v) =[5, 2] - |[repy — repy|

We have O(Z log 1) balls per pair

€

Bl = O(log 2)

Motivation

Motivation

have a multitude of uses:

Motivation

have a multitude of uses:

* Biology Model biological structures like cells

» Hydrology Calculate the rainfall in an area based
on point measurements

» Aviation Find the nearest safe landing zone in
case of failure

What is a Voronoi Diagram?

What is a Voronoi Diagram?

A Voronoi diagram V of a point set P C R? is a partition of space
into regions such that a cell of pointp € P is:

Vip,P) =scRY|s—p| <|s—p|forallp’ € P

What is a Voronoi Diagram?

A Voronoi diagram V of a point set P C R? is a partition of space
into regions such that a cell of pointp € P is:

Vip,P) = s € R%ls—pl <|ls—9pforallp’ € P

d
However, it has complexity O(nfﬂ) in R% in the worst case

What is a Voronoi Diagram?

A Voronoi diagram V of a point set P C R? is a partition of space
into regions such that a cell of pointp € P is:

Vip,P) = s € R%ls—pl <|ls—9pforallp’ € P

d
However, it has complexity O n! 2 1) in R? in the worst case
P y

Can we do better?

Approximate Voronoi diagrams

Approximate Voronoi diagrams

Definition: Approximate Voronoi Diagram

Given a set P of n points in R? and parameter ¢ > 0, a (1 + €)-Approximated
Voronoi Diagram(AVS) of P is a partition VV of R? into regions ©, s.t. for any region
p € V we have that rep,, is a (1 4 €)-ANN for z, that is:

Approximate Voronoi diagrams

Definition: Approximate Voronoi Diagram

Given a set P of n points in R? and parameter ¢ > 0, a (1 + €)-Approximated
Voronoi Diagram(AVS) of P is a partition VV of R? into regions ©, s.t. for any region
p € V we have that rep,, is a (1 4 €)-ANN for z, that is:

Vo € pl|lx —rep,| < (1+¢)d(z, P)

Approximate Nearest Neighbors in

Dd

Approximate Nearest Neighbors in

(now fast, using approximate Voronoi diagrams)

Fast ANN in R¢

» In the following, asssume P is a set of points contained in hypercube
0.5 —¢/d, 0.5+ ¢/d]*

Fast ANN in R¢

» In the following, asssume P is a set of points contained in hypercube
0.5 —¢/d, 0.5+ ¢/d]*

+ Guarantee by some transformation 1’

Fast ANN in R¢

» In the following, asssume P is a set of points contained in hypercube
0.5 —¢/d, 0.5+ ¢/d]*

+ Guarantee by some transformation 1’

» Computing ANN of g on P is equivalent to computing the ANN of T'(q) on T'(P)

Fast ANN in R¢

In the following, asssume P is a set of points contained in hypercube
0.5 —¢/d, 0.5+ ¢/d]*

Guarantee by some transformation 1’

Computing ANN of g on P is equivalent to computing the ANN of T'(q) on T'(P)
If q is outside the unit hypercube [0, 1]% any p € Pis an (1 + £)-ANN

Fast ANN in R¢

In the following, asssume P is a set of points contained in hypercube
0.5 —¢/d, 0.5+ ¢/d]*

Guarantee by some transformation 1’

Computing ANN of g on P is equivalent to computing the ANN of T'(q) on T'(P)
If q is outside the unit hypercube [0, 1]% any p € Pis an (1 + £)-ANN

Thus only consider ANN for points inside [0, 1]¢

Creating the AVD

* Remember we can compute a set B of
O(=i+ log <) balls

Creating the AVD

* Remember we can compute a set B of
O(=i+ log <) balls

» Approximate b by the cells C’ that intersect it

Creating the AVD

* Remember we can compute a set B of
O(=i+ log <) balls

» Approximate b by the cells C’ that intersect it

* Pick grid Go: s.t. d2' < (5/16>T

Creating the AVD

* Remember we can compute a set B of
O(=i+ log <) balls

» Approximate b by the cells C’ that intersect it

* Pick grid Go: s.t. d2' < (5/16>T

Creating the AVD

- Remember we can compute a set B of o
1 S T R T
O(zzer log) balls ST s
SR A R
+ Approximate b by the cells C’ that intersect it e 0000
N N R e ey
. I e
» Pick grid G s.t. vVd2' < (¢/16)r B 2.
| R _| _ | I _ L |

For each ball the amount of grid cells is bound by |

s

Creating the AVD

Remember we can compute a set B of
O(=i+ log <) balls

Approximate b by the cells C’ that intersect it
Pick grid G'y: s.t. Vd2' < (¢/16)r
For each ball the amount of grid cells is bound by

O(z)

Create from C’ a set C such that from each instance
of [0 € C’ we pick the [0 associated to the smallest
ball

7
|
| |
| |
| |
1 |
1 |
_______ _I____I____I____I
| |
|
1 |
|
|
F—— b —
|
|

Point location on the grids

N~

Point location on the grids

» (14 €)-ANN — target query on B~

N~

Point location on the grids

» (14 €)-ANN — target query on B~

+ target query — find smallest canonical grid cell of C

N~

Point location on the grids

» (14 €)-ANN — target query on B~
+ target query — find smallest canonical grid cell of C

» store cells in compressed quadtree!

N~

Point location on the grids

» (14 €)-ANN — target query on B~
+ target query — find smallest canonical grid cell of C

« store cells in compressed quadtree!

» Construction: O(|C|log |C|) time

N~

Point location on the grids

» (14 €)-ANN — target query on B~

target query — find smallest canonical grid cell of C

store cells in compressed guadtree!

» Construction: O(|C|log |C|) time
+ Space: O(|C])

N~

Point location on the grids

» (14 €)-ANN — target query on B~

target query — find smallest canonical grid cell of C

store cells in compressed guadtree!

Construction: O(|C|log |C|) time
+ Space: O(|C])
- Query time: O(log |C)

N~

Point location on the grids

(1 + £)-ANN — target query on B
target query — find smallest canonical grid cell of C

store cells in compressed guadtree!

Construction: O(|C|log |C|) time
Space: O(|C])
Query time: O(log |C')

Store for each cell in a leaf the smallest ball
it belongs to

N~

Theorem:

Theorem:

Let P be a set of n points in R%. One can build a compressed quadtree T in:

Theorem:

Let P be a set of n points in R%. One can build a compressed quadtree T in:

* O(s log % log ™) time

Theorem:

Let P be a set of n points in R%. One can build a compressed quadtree T in:
* O(s log % log ™) time

o O(—ttrr log <) size

Theorem:

Let P be a set of n points in R%. One can build a compressed quadtree T in:
* O(s log % log ™) time
o O(—ttrr log <) size

Such that a (1 4 €)-ANN query on P can be answered by a single point

A

location query inI"in:

+ O(log 2) time

Theorem:

Let P be a set of n points in R%. One can build a compressed quadtree T in:
* O(s log % log =) time <=
o O(—ttrr log <) size

Such that a (1 4 €)-ANN query on P can be answered by a single point

A

location query inI"in:

+ O(log 2) time

L 1
Construction time: O (4 log £ log 2)

L 1
Construction time: O (4 log £ log 2)

» Building a compressed quadtree can be done in O(|C'| log |C]) time

. ‘ . n 1 T
Construction time: O(57 log - log Z)
» Building a compressed quadtree can be done in O(|C'| log |C]) time

« |C| is naively bound by N = O(%)

. ‘ . n 1 T
Construction time: O(57 log - log Z)
» Building a compressed quadtree can be done in O(|C'| log |C]) time

+ |C| is naively bound by NV = O(%)

» |C'| can also be computed in that time

L 1
Construction time: O (4 log £ log 2)

Building a compressed quadtree can be done in O(|C|log |C'|) time

+ |C| is naively bound by NV = O(%)

» |C'| can also be computed in that time

+ |Bl= O log 2)

. ‘ . n 1 T
Construction time: O(57 log - log Z)
» Building a compressed quadtree can be done in O(|C'| log |C]) time

+ |C'| is naively bound by N = O(%)
» |C'| can also be computed in that time
+ |Bl= O(F= log <)

. ‘ . n 1 T
Construction time: O(57 log - log Z)
» Building a compressed quadtree can be done in O(|C'| log |C]) time

+ |C'| is naively bound by N = O(%)
» |C'| can also be computed in that time
+ |Bl= O(F= log <)

log N = log —z¢7 log %

. ‘ . n 1 T
Construction time: O(57 log - log Z)
» Building a compressed quadtree can be done in O(|C'| log |C]) time

C'| is naively bound by N = O(%)

C'| can also be computed in that time

Bl= O(log 2)

+ log N = log st log 2

g

. ‘ . n 1 T
Construction time: O(57 log - log Z)
» Building a compressed quadtree can be done in O(|C'| log |C]) time

C'| is naively bound by N = O(%)

C'| can also be computed in that time

Bl= O(log 2)

+ N=O(zrlogl) log - = O(<)

+ log N = log —st|log § < log ¥

L 1
Construction time: O (4 log £ log 2)

Building a compressed quadtree can be done in O(|C|log |C'|) time

. |C'| is naively bound by N = O(|B|)

» |C'| can also be computed in that time
+ |B]= O(ft log)

log N = log i log § < log 2tz

nl/(2d+2)
g

= 2d—|—2 log =

L 1
Construction time: O (4 log £ log 2)

Building a compressed quadtree can be done in O(|C|log |C'|) time

B|=

O(=z log

log N =

n
log g

log

1

— 2d—|—2

C'| is naively bound by N = O(|B|)

C'| can also be computed in that time

2)

/

1 < log =i

log %

=0(;)

10g El/(2d+2) \ —

n1/(2d+2) <

L 1
Construction time: O (4 log £ log 2)

» Building a compressed quadtree can be done in O(|C'| log |C]) time

B|=

O(=z log

log N =

n
log g

log

1

1 < log =i

C'| is naively bound by N = O(|B|)

C'| can also be computed in that time

2)

/

log %

=0(;)

— 2d—|—2
= O(log 7)

10g El/(2d+2) \ —

n1/(2d+2) <

L 1
Construction time: O (4 log £ log 2)

» Building a compressed quadtree can be done in O(|C'| log |C]) time

C'| is naively bound by N = O(|B|)

C'| can also be computed in that time

+ |Bl= O log 2)

=0(;)

) N:O(gad%log%) 7 10%&

+ log N = log =/ log 4 < log %
B | El/(2d+2) | —
— 2d—|—2 02
= O(log 7)

+ O(Nlog N) = O(=#- log < log 2)

n1/(2d+2) <

Size: O (=g log 1)

Size: O(=z log %)

- Compressed quadtrees have size O(|C)

Size: O(=z log %)

- Compressed quadtrees have size O(|C)

C'|is bound by N = 8%

Size: O(=z log %)

- Compressed quadtrees have size O(|C)

C'|is bound by N = 8%
: N:O(sad%bg%)

Query time: O(log %)

Query time: O(log %)

- Compressed quadtrees query time O(log |C')

. . n
Query time: O(log %)
- Compressed quadtrees query time O(log |C')
+ |Clisbound by N = &

. . E
Query time: O(log %)
- Compressed quadtrees query time O(log |C')

« |C'|is bound by N = 8%
+ log N = O(log Z)

. . E
Query time: O(log %)
- Compressed quadtrees query time O(log |C')

+ |Clisbound by N = =
+ log N = O(log Z)

/ 1Og% — O(%)
+ log N = log 2 log J < log 2

. 1/2d+2) | —» 1/(2d42) «
— 2d—|—2 1Qg n N

= O(log 2)

Summary

Summary

» Recap point-location among balls

Summary

» Recap point-location among balls

» Ball approximation

Summary

» Recap point-location among balls
» Ball approximation

« WSPD for size reduction

Summary

Recap point-location among balls

Ball approximation

WSPD for size reduction

Approximate Voronoi diagrams with proofs on the bounds

